推广 热搜: 幼儿家庭教育  幼教  学习  注意力训练  育儿新知  智力开发  家长教育心得  教育  学习动力  家庭教育帮 

2019年上海初中一年级数学上册首次月考重点要点精编

   日期:2025-01-25     来源:www.gfcfv.com    浏览:720    
文章简介:代数初步常识    1. 代数式:用运算符号+ - × ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式) 2.几个要紧的代数式:(m、n表示整数)   (1)a与b的平方差是:_______________________...

代数初步常识   

1. 代数式:用运算符号+ - × ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)

2.几个要紧的代数式:(m、n表示整数)

  (1)a与b的平方差是:__________________________________________________;   a与b差的平方是:______________________________ ;

(2)若a、b、c是正整数,则两位整数是:__________ ,则三位整数是:__________;

(3)若m、n是整数,则被5除商m余n的数是:____________________ ;偶数是:__________ ,奇数是:__________;三个连续整数是:____________________;

有理数   

1.有理数:

凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,更不是负数;-a可能不是负数,+a也可能不是正数;p不是有理数;

有理数的分类:    ①   ②

注意:有理数中,1、0、-1是三个特殊的数,它们有我们的特质;这三个数把数轴上的数分成四个地区,这四个地区的数也有我们的特质;

自然数Û 0和正整数;a>0 Û a是正数;a<0 Û a是负数;

a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数.

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

只有符号不一样的两个数,大家说其中一个是另一个的相反数;0的相反数还是0;

注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

   相反数的和为0 Û a+b=0 Û a、b互为相反数.

   4.绝对值:

正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

绝对值可表示为: ;绝对值的问题常常分类讨论;

  ;

|a|是要紧的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,  .

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于所有负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右侧的数总比左侧的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没倒数;若 a≠0,那样的倒数是;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;每个因式都不为零,积的符号由负因式的个数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不可以做除数,.

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: n=-an或n=-n , 当n为正偶数时: n =an   或 n=n .

14.乘方的概念:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是要紧的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精准位:一个近似数,四舍五入到那一位,就说这个近似数的精准到那一位.

17.有效数字:从左侧第一个不为零的数字起,到精准的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减;注意:如何算简单,如何算准确,是数学计算的非常重要的原则.

19.特殊值法:是用符合题目需要的数代入,并验证题设成立而进行猜想的一种办法,但不可以用于证明.

整式的加减  

1.单项式:在代数式中,若只含有乘法(包含乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每一个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是容易见到的两个二次三项式.

5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

整式分类为: .

6.相同种类项:所含字母相同,并且相同字母的指数也相同的单项式是相同种类项.

7.合并相同种类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:整式的加减,事实上是在去括号的基础上,把多项式的相同种类项合并.

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

一元一次方程  

1.等式的性质: 

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

2.方程:含未知数的等式,叫方程.

3.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

4.一元一次方程:只含有一个未知数,且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的规范形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程一般步骤:整理方程 。。去分母 …去括号 …移项 … 合并相同种类项 … 系数化为1 … (检验方程的解).

10.列方程解应用题的常用公式:

周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2,S长方形=ab, C正方形=4a,

S正方形=a2,S环形=π,V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.

 

相交线与平行线

 

1、常识互联网结构

 

2、常识要素

 

1、在同一平面内,两条直线的地方关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊状况。

 

2、在同一平面内,不相交的两条直线叫 平行线 。假如两条直线只有 一个 公共点,称这两条直线相交;假如两条直线 没 公共点,称这两条直线平行。

 

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

 

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

 

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

 

+ = 180°。

 

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,如此的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

 

= 。

 

5、两条直线相交所成的角中,假如有一个是 直角或90°时,称这两条直线互相垂直,

 

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

 

垂线的性质:

 

性质1:过一点有且只有一条直线与已知直线垂直。

 

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

 

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

 

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

 

6、同位角、内错角、同旁内角基本特点:

 

①在两条直线的 同一方 ,都在第三条直线的 同一侧 ,如此

 

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

 

与 是同位角; 与 是同位角; 与 是同位角。

 

②在两条直线 之间 ,并且在第三条直线的 两侧 ,如此的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

 

③在两条直线的 之间 ,都在第三条直线的 同旁边 ,如此的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

 

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

 

平行公理的推论:假如两条直线都与第三条直线平行,那样这两条直线也互相平行。

 

平行线的性质:

 

性质1:两直线平行,同位角相等。如图4所示,假如a∥b,

 

则 = ; = ; = ; = 。

 

性质2:两直线平行,内错角相等。如图4所示,假如a∥b,则 = ; = 。

 

性质3:两直线平行,同旁内角互补。如图4所示,假如a∥b,则 + = 180°;

 

+ = 180°。

 

性质4:平行于同一条直线的两条直线互相平行。假如a∥b,a∥c,则∥。

 

8、平行线的断定:

 

断定1:同位角相等,两直线平行。如图5所示,假如 =

 

或 = 或 = 或 = ,则a∥b。

 

断定2:内错角相等,两直线平行。如图5所示,假如 = 或 = ,则a∥b 。

 

断定3:同旁内角互补,两直线平行。如图5所示,假如 + = 180°;

 

+ = 180°,则a∥b。

 

断定4:平行于同一条直线的两条直线互相平行。假如a∥b,a∥c,则∥。

 

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。假如题设成立,那样结论 肯定 成立,如此的命题叫 真命题 ;假如题设成立,那样结论 未必 成立,如此的命题叫假命题。真命题的正确性是经过推理证实的,如此的真命题叫定理,它可以作为继续推理的依据。

 

10、平移:在平面内,将一个图形沿某个方向移动一段距离,图形的这种移动叫做平移变换,简称平移。

 

平移后,新图形与原图形的 形状 和 大小 一模一样。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,如此的两个点叫做对应点。

 

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

 

第六章实数

 

【要点一】实数的分类

 

1、按概念分类: 2.按性质符号分类:

 

注:0不是正数更不是负数.

 

【要点二】实数的有关定义

 

1.相反数

 

代数意义:只有符号不一样的两个数,大家说其中一个是另一个的相反数.0的相反数是0.

 

几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

 

互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

 

2.绝对值 |a|≥0.

 

3.倒数 0没倒数 乘积是1的两个数互为倒数.a、b互为倒数 .

 

4.平方根

 

假如一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没平方根.a的平方根记作.

 

一个正数a的正的平方根,叫做a的算术平方根.a的算术平方根记作 .

 

5.立方根

 

假如x3=a,那样x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

 

【要点三】实数与数轴

 

数轴概念: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要点缺一不可.

 

【要点四】实数大小的比较

 

1.对于数轴上的任意两个点,靠右侧的点所表示的数较大.

 

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

 

3.无理数的比较大小:

 

【要点五】实数的运算

 

1.加法

 

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

 

2.减法:减去一个数等于加上这个数的相反数.

 

3.乘法

 

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

 

4.除法

 

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

 

5.乘方与开方

 

an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

 

正数和0可以开平方,负数不可以开平方;正数、负数和0都可以开立方.

 

零指数与负指数

 

【要点六】有效数字和科学记数法

 

1.有效数字:

 

一个近似数,从左侧第一个不是0的数字起,到精准到的数位为止,所有些数字,都叫做这个近似数的有效数字.

 

2.科学记数法:

 

把一个数用 的形式记数的办法叫科学记数法.

 

第七章平面直角坐标系

 

1、常识互联网结构

 

2、常识要素

 

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做 。

 

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

 

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

 

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P。

 

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

 

6、各象限点的坐标特征①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

 

7、坐标轴上点的坐标特征①x轴正半轴上的点:横坐标 0,纵坐标 0;②x轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

 

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。

 

8、点P到x轴的距离是 |b| ,到y轴的距离是 |a| 。

 

9、对称点的坐标特征①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

 

10、点P 到x轴的距离是 ; 到y轴的距离是 ; 点P 关于x轴对称的点坐标为;点P 关于y轴对称的点坐标为。

 

11、假如两个点的 横坐标 相同,则过这两点的直线与y轴平行、与x轴垂直 ;假如两点的 纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直 。假如点P、Q,这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;假如点P、Q,这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

 

12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在1、三象限角平分线上的点的横坐标与纵坐标相同;在2、四象限角平分线上的点的横坐标与纵坐标互为相反数。假如点P 在1、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;假如点P 在2、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。

 

13、表示一个点的地方的办法:一是准确适合地打造平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,打造的平面直角坐标系也不同,得到的同一个点的坐标也不同。

 

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P向左平移2个单位后得到的点的坐标为;将点P向右平移2个单位后得到的点的坐标为;将点P向上平移2个单位后得到的点的坐标为;将点P向下平移2个单位后得到的点的坐标为;将点P先向左平移3个单位后再向上平移5个单位后得到的点的坐标为;将点P先向左平移3个单位后再向下平移5个单位后得到的点的坐标为;将点P先向右平移3个单位后再向上平移5个单位后得到的点的坐标为;将点P先向右平移3个单位后再向下平移5个单位后得到的点的坐标为。

 

第八章二元一次方程组

 

1、常识互联网结构

 

2、常识要素

 

1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

 

2、方程含有两个未知数,并且含有未知数的项的次数都是1,如此的方程叫二元一次方程,二元一次方程的一般形式为 。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

 

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,如此的方程组叫二元一次方程组。使二元一次方程组每一个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

 

4、用代入法解二元一次方程组的一般步骤:察看方程组中,是不是有用含一个未知数的式子表示另一个未知数,假如有,则将它直接代入另一个方程中;假如没,则将它中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

 

5、用加减法解二元一次方程组的一般步骤:方程组的两个方程中,假如同一个未知数的系数既不相等又不互为相反数,就用适合的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;把两个方程的两边分别相加或相减,消去一个未知数;解这个一元一次方程,求出一个未知数的值;将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

 

6、解三元一次方程组的一般步骤:①察看方程组中未知数的系数特征,确定先消到哪里个未知数;②借助代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

 

第九章不等式与不等式组

 

1、常识互联网结构

 

2、常识要素

 

1、用不等号表示不等关系的式子叫不等式,不等号主要包含: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

 

2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有些解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,如此的不等式叫一元一次不等式。

 

3、不等式的性质:

 

①性质1:不等式的两边同时加上同一个数,不等号的方向 不变 。

 

用字母表示为: 假如 ,那样 ; 假如 ,那样 ;

 

假如 ,那样 ; 假如 ,那样 。

 

②性质2:不等式的两边同时乘以同一个 正数 ,不等号的方向 不变 。

 

用字母表示为: 假如 ,那样 ;假如 ,那样 ;

 

假如 ,那样 ;假如 ,那样 ;

 

③性质3:不等式的两边同时乘以同一个 负数 ,不等号的方向 改变 。

 

用字母表示为: 假如 ,那样 ;假如 ,那样 ;

 

假如 ,那样 ;假如 ,那样 ;

 

4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并相同种类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要依据一元一次不等式的具体状况灵活选择步骤。

 

5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,如此的不等式组叫一元一次不等式组。使不等式组中的每一个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有些解组成的集合,叫这个不等式组的解集解。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

 

6、解一元一次不等式组的一般步骤:①求出这个不等式组中每个不等式的解集;②借助数轴求出这类不等式的解集的公共部分,得到这个不等式组的解集。假如这类不等式的解集的没公共部分,则这个不等式组无解 。

 

7、求出每个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

 

第十章数据的采集、整理与描述

 

常识要素

 

1、对数据进行处置的一般过程:采集数据、整理数据、描述数据、剖析得出结论。

 

2、数据采集过程中,调查的办法一般有两种:全方位调查和抽样调查。

 

3、除去文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

 

4、抽样调查简称抽查,它只抽取一部分对象进行调查,依据调查数据判断全体对象的状况。要考察的全体对象叫总体,组成总体的每个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。

 

5、画频数直方图的步骤:①计算数差;②确定组距和组数;③列频数分布表;④画频数直方图 。

 

 

 
打赏
 
更多>热门阅读

推荐图文
今日推荐
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报